58 research outputs found

    A survey and evaluation of the English program in a private school.

    Full text link
    Thesis (Ed.M.)--Boston Universit

    Factors Influencing the Emergence and Spread of HIV Drug Resistance Arising from Rollout of Antiretroviral Pre-Exposure Prophylaxis (PrEP)

    Get PDF
    Background: The potential for emergence and spread of HIV drug resistance from rollout of antiretroviral (ARV) pre-exposure prophylaxis (PrEP) is an important public health concern. We investigated determinants of HIV drug resistance prevalence after PrEP implementation through mathematical modeling. Methodology: A model incorporating heterogeneity in age, gender, sexual activity, HIV infection status, stage of disease, PrEP coverage/discontinuation, and HIV drug susceptibility, was designed to simulate the impact of PrEP on HIV prevention and drug resistance in a sub-Saharan epidemic. Principal Findings: Analyses suggest that the prevalence of HIV drug resistance is influenced most by the extent and duration of inadvertent PrEP use in individuals already infected with HIV. Other key factors affecting drug resistance prevalence include the persistence time of transmitted resistance and the duration of inadvertent PrEP use in individuals who become infected on PrEP. From uncertainty analysis, the median overall prevalence of drug resistance at 10 years was predicted to be 9.2% (interquartile range 6.9%-12.2%). An optimistic scenario of 75% PrEP efficacy, 60% coverage of the susceptible population, and 5% inadvertent PrEP use predicts a rise in HIV drug resistance prevalence to only 2.5% after 10 years. By contrast, in a pessimistic scenario of 25% PrEP efficacy, 15% population coverage, and 25% inadvertent PrEP use, resistance prevalence increased to over 40%. Conclusions: Inadvertent PrEP use in previously-infected individuals is the major determinant of HIV drug resistance prevalence arising from PrEP. Both the rate and duration of inadvertent PrEP use are key factors. PrEP rollout programs should include routine monitoring of HIV infection status to limit the spread of drug resistance. © 2011 Abbas et al

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Variation of the Side Chain Branch Position Leads to Vastly Improved Molecular Weight and OPV Performance in 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene/2,1,3-benzothiadiazole Copolymers

    No full text
    Through manipulation of the solubilizing side chains, we were able to dramatically improve the molecular weight (Mw) of 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene (BDT)/2,1,3-benzothiadiazole (BT) copolymers. When dodecyl side chains (P1) are employed at the 4- and 8-positions of the BDT unit, we obtain a chloroform-soluble copolymer fraction with Mw of 6.3 kg/mol. Surprisingly, by moving to the commonly employed 2-ethylhexyl branch (P2), Mw decreases to 3.4 kg/mol. This is despite numerous reports that this side chain increases solubility and Mw. By moving the ethyl branch in one position relative to the polymer backbone (1-ethylhexyl, P3), Mw is dramatically increased to 68.8 kg/mol. As a result of this Mw increase, the shape of the absorption profile is dramatically altered, with λmax = 637 nm compared with 598 nm for P1 and 579 nm for P2. The hole mobility as determined by thin film transistor (TFT) measurements is improved from ~1×10−6 cm2/Vs for P1 and P2 to 7×10−4 cm2/Vs for P3, while solar cell power conversion efficiency in increased to 2.91% for P3 relative to 0.31% and 0.19% for P1 and P2, respectively

    The incidence and distribution of musculoskeletal disorders in final‐year Australian sonography students on clinical placement

    No full text
    Quinton, AE ORCiD: 0000-0001-6585-7468Introduction: Work-related musculoskeletal disorders (WRMSD) are defined as injury or pain resulting from work and are common in qualified sonographers, affecting the shoulder, neck, wrist, and hands. Risk factors include poor ergonomics, work flow, inadequate breaks, and psychological stress. WRMSD carries a significant financial and emotional cost to industry. The incidence of WRMSD in Australian trainee sonographers is unknown. The aim of this research is to identify the incidence and distribution of WRMSD in trainee sonographers. Method: This is a prospective observational study. An anonymous online survey was distributed to final-year medical sonography students, and participation was voluntary and based on self-selection. Results: There were 35/86 respondents, a 40.7% response rate. The incidence of WRMSD was 97%. Age, body mass index, height, gender, time spent scanning/day, and number of scans performed/day were not found to be associated with the development of WRMSD. The scanning shoulder, wrist, neck, and back were most commonly affected. Conclusion: WRMSD incidence and distribution in Australian trainees are similar to that of qualified sonographers. It is therefore important to begin preventative measures early on in sonographer training to help minimise WRMSD developing
    corecore